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a b s t r a c t

We propose a new algorithm to extend the standard Fibonacci photon sieve to the phase-only gen-
eralized Fibonacci photon sieve (GFiPS) and find that the focusing properties of the phase-only GFiPS are
only relevant to the characteristic roots of the recursion relation of the generalized Fibonacci sequences.
By switching the transparent and opaque zones on the basis of the generalized Fibonacci sequences,
we not only realize adjustable bifocal lengths, but also give their corresponding analytic expressions.
Besides, we investigate a special phase-only GFiPS, a spiral-phase GFiPS, which can present twin vortices
along the axial coordinate. Compared with the single focusing system, bifocal system can be exploited to
enhance the processing speed, and offer a broad range of applications, such as direct laser writing, optical
tweezers or atom trapping and paralleled fluorescence microscope.

Crown Copyright & 2016 Published by Elsevier B.V. All rights reserved.
1. Introduction

Focusing of X-ray and extreme ultraviolet (EUV) has many
applications in physical and life sciences, such as high-resolution
microscopy, spectroscopy, and lithography [1]. A traditional
Fresnel zone plate (FZP), which has inherent limitations [2,3], can
be used for this kind of focusing [4,5]. Some aperiodic zone plates,
generated with the fractal Cantor set, have been proposed to
overcome some of these limitations [6,7], another interesting
mathematical generator of aperiodic zone plates is the Fibonacci
sequence. Photonics is a potential field of applications for novel
devices designed and constructed by using a Fibonacci sequence as
a consequence of its unique properties. The focusing and imaging
properties of Fibonacci optical elements, e.g., quasicrystals [8,9],
gratings [10–12], lenses [13–15], zone plates [16], etc., are studied
in detail. In mathematics, many mathematicians have extensively
studied the Fibonacci sequence and its various generalizations
[17,18] in the past decades.

In 2001, Kipp et al. proposed a photon sieve [19], which is a FZP
with the transparent zones replaced by a great number of com-
pletely separated pinholes to overcome the disadvantages of tra-
ditional zone plate. Several kinds of theoretical models [20–22]
have been studied mathematically and experimentally [23–26] to
design different kinds of photon sieves, such as fractal [27,28],
compound [23], Zernike apodized [29], phase zone [30], spiral
[31], square [32], and reflection photon sieves [33]. In our previous
work, we proposed a bifocal modified Fibonacci photon sieve
evier B.V. All rights reserved.
(MFiPS), designed by using the Fibonacci sequence with two dif-
ferent initial seed elements [34], but the ratio of the two focal
lengths is a fixed value.

In this paper, we introduce the aperiodic generalized Fibonacci
sequences into photon sieves, and come to a conclusion that the
phase-only generalized Fibonacci photon sieve (GFiPS) can gen-
erate two equal axial intensity foci with adjustable location. We
find the relationship between the focusing properties of a phase-
only GFiPS and its characteristic roots of the recursion relation of
the generalized Fibonacci sequences. Besides, based on the laser
vortex beams generated by use of spiral phase [13,35,36], we
present a spiral-phase generalized Fibonacci photon sieve to pro-
duce twin vortices along the axial coordinate, which still has the
same focusing properties as that mentioned above.
2. Phase-only generalized Fibonacci photon sieves

For the generalized Fibonacci sequences, their initial seed ele-
ments are as follows:

= ( = ∈ ) ( )+F a j a N1, 2, 3, . 1j j j

And the corresponding linear recursion relation of the gen-
eralized Fibonacci sequences can be written as

= + + ( ∈ ) ( )− − −F pF qF rF p q r R, , . 2n n n n1 2 3

The absolute value of one of the corresponding characteristic
roots of the recursion relation can be defined as the limit of the
ratio of two consecutive generalized Fibonacci numbers
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Fig. 2. Normalized intensity distribution along the optical axis produced by a
phase-only GFiPS and a TPS with the same resolution.

Fig. 3. Normalized axial intensity distribution produced by two phase-only GFiPSs
based on different generalized Fibonacci sequences. Curve 1: Fn¼�Fn�1þFn�2 (F11

in this case); curve 2: Fn¼2Fn�1þ0.3Fn�2 (F8 in this case).

Table 1
The focusing properties of phase-only GFiPSs.

Sequences (p, q, r)

(�1,1,�1) (�1,1,0) (2,0.3,0)
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γ =
( )→∞

−F Flim / .
3j

j j 1

When (p, q, r)¼(1, 1, 0), we can get the standard Fibonacci
sequence. Obviously, x1¼(1þ√5)/2 and x2¼(1�√5)/2, which are
associated with the classical geometrical problem of the golden
section, are its characteristic roots of the characteristic equation
x2�x�1¼0.

We now retrospect the design of a FZP based on the plane wave
incidence. All the designed rays are converged upon a single point.
As known, the radius of the mth zone can be determined by [4]

λ λ= ( ) + ( )r m m f/2 , 4m
2

where f denotes the expected focal length and λ is the incident
wavelength.

A phase-only GFiPS can be generated similar to the process of a
traditional photon sieve (TPS) [23] and a modified Fibonacci
photon sieve [34]. Taking a generalized Fibonacci sequence into
account, whose initial seed elements are F1¼1, F2¼2 and F3¼3
and the recursion relation is Fn¼�Fn�1þFn�2�Fn�3, where the
minus denotes complement operation. After encoding two seed
elements as (F1, F2, F3)¼(0, 01, 101), the six-order switching
sequence F4 is 010011 while 1 denotes transparent zones and
0 denotes opaque ones. That means the number of total zones is
six and three zones are transparent. The corresponding phase-only
GFiPS is shown in Fig. 1(b), which is a generalized Fibonacci zone
plate (GFiZP) [see Fig. 1(a)] with the transparent and opaque zones
replaced by a great number of completely separated pinholes,
and their phases are 0 and π, respectively. The diameter d of the
pinholes in the mth zone of w in width should take the value of
d¼1.16w [34].
Total zones 230 233 241
γ |�1.839| |�1.618| 2.140
a (mm) 2.716 2.716 2.762
Focal lengths based on Eq. (6) fI (cm) 3.862 4.048 3.670

fII (cm) 7.103 6.549 7.854
Focal lengths based on numerical
calculation

f1 (cm) 3.861 4.047 3.675
f2 (cm) 7.107 6.549 7.849
f2/f1 1.841 1.618 2.136
3. Simulation and discussion

Theoretically, the diffraction field of the phase-only GFiPS can
be numerically calculated by the Rayleigh–Sommerfeld diffraction
integral formula under the condition of a plane wave incidence
with unit amplitude [37–39]

∬ ξ η
λ

ξ η( ) = ( ) ( ) +
( )Σ

⎛
⎝⎜

⎞
⎠⎟U x y z t

ikR
i R

i
kR

z
R

, , , , 0
exp

1 d d ,
5

where t(ξ, η, 0) is the pupil function of a GFiPS, i is the imaginary
unit, k is the wave number, z is the axial distance from the pupil
plane, and R denotes the distance between point (ξ, η, 0) and point
(x, y,z).
Fig. 1. (a) A generalized Fibonacci zone plate. (b) A
To investigate the focusing performance of the phase-only
GFiPSs, some numerical simulations are done with the incident
wavelength λ of 632.8 nm, the expected focal length f of 5 cm.
Based on Eq. (5), we use FFT method in the following simulation in
HP Z800 workstation.

First of all, a phase-only GFiPS of ten-order switching sequence F10

is discussed. Its encoded seed elements are (F1, F2, F3)¼(0, 01, 011),
phase-only generalized Fibonacci photon sieve.



Fig. 4. Normalized transverse intensity distribution produced by three phase-only GFiPSs based on different generalized Fibonacci sequences. (a) Fn¼�Fn�1þFn�2�Fn�3

(F10 in this case); (b) Fn¼�Fn�1þFn�2 (F11 in this case); (c) Fn¼2Fn�1þ0.3Fn�2 (F8 in this case).
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and the corresponding linear recursion relation is Fn¼�Fn�1þ
Fn�2�Fn�3, whose characteristic equation is x3þx2�xþ1¼0, and
the characteristic roots are �1.839, 0.420þ0.606i, and 0.420�0.606i,
respectively. For comparison, a TPS with the same resolution is
represented. The number of transparent zones is 125 for the phase-
only GFiPS and 115 for the TPS while each of them has a total of 230
zones. Their radii are all 2.716 mm. The axial normalized intensity
computed for the phase-only GFiPS and the associated TPS are shown
in Fig. 2. Obviously, in this case, the first focus of the phase-only
GFiPS is located at f1¼3.856 cm and the other one at f2¼7.102 cm
while the prime focal length of TPS is 4.999 cm. Thus, the ratio
of the two focal lengths satisfies f2/f1¼1.842, which is approxi-
mately equal to the absolute value of one of the corresponding
characteristic roots γ¼ |�1.839|. Actually it has been indicated
that the standard Fibonacci sequence can be regarded as two
incommensurable periods [40]. In this case, we can divide the
generalized Fibonacci sequences into two periods under the proper
encoding. The two lengths are as follows: N1¼2N/(γ�1þ1) and
N2¼2N/(γþ1), where N is the total of zones. Hence, the two focal
lengths can be expressed as

λ λ
= =

( )
f

a
N

f
a
N

,
6I

2

1
II

2

2

where a is the radius of a phase-only GFiPS. Theoretically, the two
focal lengths should be fI¼3.862 cm and fII¼7.103 cm, which are
agree with the simulation results very well.



Fig. 5. Normalized transverse intensity distribution produced by three spiral-phase GFiPSs based on different generalized Fibonacci sequences. (a) Fn¼�Fn�1þFn�2�Fn�3

(F10 in this case); (b) Fn¼�Fn�1þFn�2 (F11 in this case); (c) Fn¼2Fn�1þ0.3Fn�2 (F8 in this case).

Table 2
The focusing properties of spiral-phase GFiPSs.

Sequences (p, q, r)

(�1,1,�1) (�1,1,0) (2,0.3,0)

Total zones 230 233 241
γ |�1.839| |�1.618| 2.140
a (mm) 2.716 2.716 2.762
Diameter of the focal rings d1 (μm) 3.563 3.616 3.313

d2 (μm) 6.479 5.932 7.076
d2/d1 1.818 1.618 2.136
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An Fibonacci photon sieve can present two equal intensity foci
and the ratio of the two focal lengths approaches the golden mean
[34] which is a fixed value. But for a phase-only GFiPS, the ratio
may be adjustable due to the different generalized Fibonacci
sequences.

For the purpose of adjustable ratio of the two axial focal lengths,
the other two kinds of phase-only GFiPSs are investigated. The two
generalized Fibonacci sequences are Fn¼�Fn�1þFn�2 and
Fn¼2Fn�1þ0.3Fn�2 and the values γ are |�1.618| and 2.118,
respectively. Besides, the encoded seed elements are all (F1, F2)¼
(01, 010). Fig. 3 shows axial intensity distribution produced by
phase-only GFiPS. The ratio of the two focal lengths changes from
1.618 to 2.140 due to the different generalized Fibonacci sequences.
Table 1 shows the focusing properties of phase-only GFiPSs. It is
necessary to point out that the ratio of two focal lengths generated
by the generalized Fibonacci sequences with the proper encoding
can be equal to γ. More important, it suggests that the ratio of
two focal lengths is also adjustable and just relevant to the given
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switching sequence. Moreover, it also suggest that the theore-
tical focal lengths based on Eq. (6) agree well with simulation
results. This focusing properties offer an operable instruction for
designing bifocal diffraction optical elements conformed to actual
requirement.

To further study the transverse focusing properties of the
phase-only GFiPS, Fig. 4 shows the intensity maps and the trans-
verse intensity distribution of three aforementioned phase-only
GFiPSs at the two focal planes. In Fig. 4(a), the full-width at half-
maximum (FWHM) of the two focal spots are r1¼2.343 μm and
r2¼4.306 μm, whose axial focusing distribution was shown in
Fig. 3 with solid line. Interestingly, r2/r1¼1.838Eγ¼ |�1.839|. In
other words, the ratio of FWHM of two focal spots is approxi-
mately equal to the absolute value of one of its characteristic roots.
Other two phase-only GFiPSs also have the similar focusing
property. The FWHM of the two focal spots are 2.420 μm and
3.928 μm in Fig. 4(b), and 2.194 μm and 4.650 μm in Fig. 4(c).
Furthermore, we can use super-Gaussian amplitude modulation
technology to improve the transverse resolution [34].

Laser vortex beams are generated using a spiral phase, which is
generally more energy efficient in comparison with other optical
elements. So we introduce the spiral phase into a phase-only GFiPS
to form a spiral-phase GFiPS, which is a GFiZP with the transparent
zones replaced by a great number of completely separated pin-
holes, and their phases change from 0 to 2π in each zone. Fig. 5(a),
(b) and (c) shows the numerically simulated transverse intensity
and the intensity maps at the two focal planes for three spiral-
phase GFiPSs. From Table 2, we find that the diameters of the focal
rings, d, conforms to the rule i.e. d2/d1Eγ. Hence, the spiral-phase
GFiPSs can generate twin axial vortices.
4. Summary

In conclusion, we proposed a new family of photon sieves which
can be designed based on the generalized Fibonacci sequences, and
investigated the axial and transverse focusing properties of the
phase-only GFiPS. It suggested that phase-only GFiPSs presented
two axial foci with equal intensity. We found the relationship
between focusing properties of the phase-only GFiPSs and their
characteristic roots, and gave the analytic expressions of the corre-
sponding focal lengths. But for spiral-phase GFiPSs, they can produce
a twin optical vortices along the axial coordinate. We believe that
the phase-only GFiPSs and the spiral-phase GFiPSs may offer a broad
range of applications, such as direct laser writing, optical tweezers or
atom trapping and paralleled fluorescence microscope.
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